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Full worked solutions to selected examples from control section of the course 

Introduction 

These worked solutions are intended as a supplement to the tutorial examples covered in the seminars. 

Only the odd numbered examples are included – this is deliberate, we would like you to try the even 

numbered examples for yourselves and we will be happy to help if you are stuck on any of these. 

Solutions to the even numbered examples will not be made generally available on moodle. 

CONTROL: EXERCISE SHEET 0 

1. Determine the Laplace transform 𝐹(𝑠) of 𝑓(𝑡), if: 

a) 𝑓(𝑡) = 0.5
𝑑𝑥

𝑑𝑡
+ 4𝑥, and 𝑥 = 4 when 𝑡 = 0 

Solution: In these cases, it’s best to be methodical. The question tells us that x=4 for t=0, so we cannot 

use the normal assumption that the system is at rest and x=0 at t=0. 

So the Laplace transform of 0.5
𝑑𝑥

𝑑𝑡
  is 0.5(𝑠𝑋(𝑠) − 𝑓(0))𝑠 = 0.5𝑠𝑋(𝑠) − 2 from the table of Laplace 

Transforms.  

4𝑥 has a Laplace transform of 4𝑋(𝑠). 

And therefore 

𝐹(𝑠) = (0.5𝑠 + 4)𝑋(𝑠) − 2 

b) 𝑓(𝑡) =
𝑑2𝑥

𝑑𝑡2 + 0.1
𝑑𝑥

𝑑𝑡
+ 3𝑥, and 𝑥 = 10 and 

𝑑𝑥

𝑑𝑡
= 2 when 𝑡 = 0 

Solution: 

The Laplace transform of 
𝑑2𝑥

𝑑𝑡2   is  

𝑠2𝑋(𝑠) − 𝑠𝑥(0) − 𝑥1(0) 

To explain the notation, 𝑥1(0) is the value of the first derivative with respect to time - 
𝑑𝑥

𝑑𝑡
 at t=0 

From the question: 

𝑑2𝑥

𝑑𝑡2
→ 𝑠2𝑋(𝑠) − 10𝑠 − 2 

𝑑𝑥

𝑑𝑡
→ 𝑠𝑋(𝑠) − 10 

𝐻𝑒𝑛𝑐𝑒 

Hence: 

𝐹(𝑠) = 𝑠2𝑋(𝑠) − 10𝑠 − 2 + 0.1(𝑠𝑋(𝑠) − 10) + 3𝑋(𝑠) 

Simplifying: 

𝐹(𝑠) = (𝑠2 + 0.1𝑠 + 3)𝑋(𝑠) − 10𝑠 − 3 

 

c) 𝑓(𝑡) =
𝑑3𝑥

𝑑𝑡3 +
𝑑2𝑥

𝑑𝑡2 + 0.1
𝑑𝑥

𝑑𝑡
+ 3𝑥, and 𝑥 = 0,

𝑑𝑥

𝑑𝑡
= 0,

𝑑2𝑥

𝑑𝑡2 = 0 when 𝑡 = 0 

Using the same breakdown as before: 

The Laplace transform of 
𝑑3𝑥

𝑑𝑡3   is  
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𝑠3𝑋(𝑠) − 𝑠𝑥(0) − 𝑥1(0) 

 

2. a) Use Laplace transforms to determine the solution to the following differential equation in the 

time domain (i.e. 𝑥(𝑡)) 

𝑑2𝑥

𝑑𝑡2
+ 0.1

𝑑𝑥

𝑑𝑡
+ 𝑥 = 𝑓(𝑡) 

Where 𝑓(𝑡) is a unit step and the initial conditions are taken to be zero 

b) Determine the transfer function 𝐺(𝑠) of the system analysed in (a) taking 𝑓(𝑡) to be the input and 

𝑥(𝑡) to be the output of the system. 

 

3. Determine the transfer function for the following, where 𝑥𝑖 is the input and 𝑥𝑜 is the output 

a) 
𝑑2𝑥𝑜

𝑑𝑡2 + 2𝜁𝜔𝑛
𝑑𝑥𝑜

𝑑𝑡
+ 𝜔𝑛

2𝑥𝑜 = 𝑥𝑖  

Solution: 

Breaking up the expression into its component parts, and remembering that to derive a transfer 

function we take the initial conditions to be zero: 

𝑑2𝑥𝑜

𝑑𝑡2
ℒ
→

𝑠2𝑋𝑜(𝑠) 

2𝜁𝜔𝑛

𝑑𝑥𝑜

𝑑𝑡
ℒ
→

2𝜁𝜔𝑛𝑠𝑋𝑜(𝑠) 

𝜔𝑛
2𝑥𝑜

ℒ
→

𝜔𝑛
2𝑋𝑜(𝑠) 

𝑥𝑖
ℒ
→

𝑋𝑖(𝑠) 

So: 

𝑠2𝑋𝑜(𝑠) + 2𝜁𝜔𝑛𝑠𝑋𝑜(𝑠) + 𝜔𝑛
2𝑋𝑜(𝑠) = (𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛

2)𝑋𝑜(𝑠) = 𝑋𝑖(𝑠) 

The transfer function (what goes out/what goes in): 

𝑋𝑜(𝑠)

𝑋𝑖(𝑠)
=

1

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 

 

b) 𝑇𝑥�̇� + 𝑥𝑖 = 𝑥𝑜 

𝑠𝑇𝑋𝑖(𝑠) + 𝑋𝑖(𝑠) = 𝑋𝑜(𝑠) 

𝑋𝑜(𝑠)

𝑋𝑖(𝑠)
= 𝑠𝑇 + 1 

c) 
𝑑4𝑥𝑜

𝑑𝑡4 + 3
𝑑3𝑥𝑜

𝑑𝑡3 + 2
𝑑2𝑥𝑜

𝑑𝑡2 + 2
𝑑𝑥𝑜

𝑑𝑡
+ 𝑥𝑜 = 2

𝑑𝑥𝑖

𝑑𝑡
+ 5𝑥𝑖 

(𝑠4 + 3𝑠3 + 2𝑠2 + 2𝑠 + 1)𝑋𝑜(𝑠) = (2𝑠 + 5)𝑋𝑖(𝑠) 

𝑋𝑜(𝑠)

𝑋𝑖(𝑠)
=

2𝑠 + 5

𝑠4 + 3𝑠3 + 2𝑠2 + 2𝑠 + 1
 

Answers: 

1. a) 𝐹(𝑠) = (0.5𝑠 + 4)𝑋(𝑠) − 2 

b) 𝐹(𝑠) = (𝑠2 + 0.1𝑠 + 3)𝑋(𝑠) − 10𝑠 − 3 

c) 𝐹(𝑠) = (𝑠3 + 𝑠2 + 0.1𝑠 + 3)𝑋(𝑠) 
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2. a) 𝑥(𝑡) = 1 −
𝑒−0.05𝑡

√1−(0.05)2
sin (𝑡√1 − (0.05)2 + cos−1 0.05) 

b) 𝐺(𝑠) =
1

(𝑠2+0.1𝑠+1)
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EXERCISE SHEET 1 

1. Derive expressions for the transfer functions that relate input force 𝐹(𝑡), and output displacement 

𝑥(𝑡), of the spring and mass systems shown in figures 1a and 1b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1(a). Spring System   Figure 1(b). Mass System 

Solution:  

For Figure 1a, the physics of the spring gives the relationship between the force, 𝐹, and 𝑥 (the question 

states that 𝑥 is the extension, so 𝐹 = 0 for 𝑥 = 0) : 

𝐹𝑜𝑟𝑐𝑒 (↓) = 𝑘 𝑥 

Note that at the moment, I am keeping track of direction, we will check through the signs later on. 

Expressing this mathematically:  

𝐹(𝑡) = 𝑘 𝑥(𝑡) 

(Check that signs are consistent with the definitions) 

And with Laplace Transforms: 

𝐹(𝑠) = 𝑘 𝑋(𝑠) 

For figure 1b, Newton’s second law of motion states that the acceleration of the body will be the 

magnitude of the force divided my the mass: 

𝑑2𝑥

𝑑𝑡2
=

𝐹(𝑡)

𝑚
 

Again, check that signs are consistent – will a positive force give a positive acceleration? 

From the tables, the Laplace transform of 
𝑑𝑛

𝑑𝑡𝑛 (𝑓(𝑡)) is: 

𝑠𝑛𝐹(𝑠) − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−2𝑓1(0) … − 𝑓𝑛−1(0)  

So 
𝑑2𝑥

𝑑𝑡2  will become 𝑠2𝑋(𝑠) − 𝑠𝑥(0) − 𝑥′(0) – and in this case we assume that initial conditions are zero, so 

the Laplace transform of the equation of motion is  

𝑠2 𝑋(𝑠) =
𝐹(𝑠)

𝑚
 

So  

𝐹(𝑠) = 𝑚𝑠2 𝑋(𝑠) 

𝑥 

𝐹(𝑡) 

𝑘 

𝑚 

𝐹(𝑡) 

𝑥 
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c) Derive an expression for the transfer function 𝐺(𝑠) of a system that combines the spring and mass systems 

in parts (a) and (b). 

The forces acting on the mass are the input force 𝐹(𝑠) and the tension in the spring, 𝑘 𝑋(𝑠). Here, it makes 

sense to sketch a free body diagram for the mass to get the directions of the forces (and hence the signs in 

the equation) right: 

 
Combining the answers from (a) and (b): 

𝐹(𝑠) = 𝑚𝑠2 𝑋(𝑠) = 𝐹(𝑠) − 𝑘 𝑋(𝑠) 

𝐹(𝑠) = 𝑚𝑠2 𝑋(𝑠) + 𝑘 𝑋(𝑠) = (𝑚𝑠2 + 𝑘 )𝑋(𝑠) 

Since we are interested in the displacement (response) caused by a given force (input): 

𝑋(𝑠) =
𝐹(𝑠)

𝑚𝑠2 + 𝑘
 

And hence the transfer function relating input (force) to output (displacement) is: 

𝐺(𝑠) =
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
=

𝑋(𝑠)

𝐹(𝑠)
=

1

𝑚𝑠2 + 𝑘
 

4. Numerical answers: 

a) 𝐺(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝑘𝑇
 

 

b) 𝐺(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝐼𝑠2+𝑘𝑇
 

 
 

5. Derive expressions for the transfer functions that relate input  𝑥𝑖, and output 𝑥0, of the spring/mass 

systems shown in figures 1a and 1b. 

 

 

 

 

 

 

 

  Figure 1a    Figure 1b 

Solution:  

In Figure 1a, think about the force acting on the mass: 

𝐹𝑜𝑟𝑐𝑒 (→) =  𝐾 (𝑥𝑖 − 𝑥𝑜) 

This force translates into an acceleration for the mass, M: 

𝑘𝑋(𝑠) 

𝑚 

𝑋(𝑠) 

𝑥0 
𝑥𝑖 

𝐾 

𝑀 𝑀1 𝑀2 

𝐾1 𝐾2 

𝑥𝑖 
𝑥0 𝑥1 

𝐹(𝑠) 
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𝑀
𝑑2𝑥𝑜

𝑑𝑡2
=  𝐾 (𝑥𝑖 − 𝑥𝑜) 

Putting the terms in 𝑥𝑜 and 𝑥𝑖on separate sides of the equation: 

𝑀
𝑑2𝑥𝑜

𝑑𝑡2
+ 𝐾𝑥𝑜 =  𝐾𝑥𝑖  

Laplace transforms give: 

(𝑀𝑠2 + 𝐾)𝑋𝑜(𝑠) =  𝐾𝑋𝑖(𝑠) 

To make this into a transfer function, remember that 𝐺(𝑠) =  
𝑋𝑜(𝑠)

𝑋𝑖(𝑠)
 

𝑋𝑜(𝑠)

𝑋𝑖(𝑠)
=

𝐾

(𝑀𝑠2 + 𝐾)
 

Figure 2b follows similar logic: The force on mass 𝑀2 is given by: 

𝐹𝑜𝑟𝑐𝑒 (→) = 𝐾2(𝑥1 − 𝑥𝑜) 

 𝑀2

𝑑2𝑥𝑜

𝑑𝑡2
=  𝐾2 (𝑥1 − 𝑥𝑜) (1) 

There are two forces on mass 𝑀1: 

𝐹𝑜𝑟𝑐𝑒 (→) =  𝐾1(𝑥𝑖 − 𝑥1) 

𝐹𝑜𝑟𝑐𝑒 (←) =  𝐾2(𝑥1 − 𝑥𝑜) 

 

 𝑀1

𝑑2𝑥1

𝑑𝑡2
=  𝐾1(𝑥𝑖 − 𝑥1) − 𝐾2 (𝑥1 − 𝑥𝑜) (2) 

 

Laplace transforms of equations (1) and (2) give: 

 𝑀2𝑠2𝑋𝑜(𝑠) =  𝐾2 (𝑋1(𝑠) − 𝑋𝑜(𝑠)) (3) 

 𝑀1𝑠2𝑋1(𝑠) =  𝐾1 (𝑋𝑖(𝑠) − 𝑋1(𝑠)) − 𝐾2 (𝑋1(𝑠) − 𝑋𝑜(𝑠)) (4) 

  
From (3):  

𝑋1(𝑠) = 𝑋𝑜(𝑠) (
𝑀2𝑠2 + 𝐾2

𝐾2
) 

Substituting in (4) for 𝑋1(𝑠): 

𝑀1𝑠2𝑋𝑜(𝑠) (
𝑀2𝑠2 + 𝐾2

𝐾2
) =  𝐾1  (𝑋𝑖(𝑠) − 𝑋𝑜(𝑠) (

𝑀2𝑠2 + 𝐾2

𝐾2
)) − 𝐾2  (𝑋𝑜(𝑠) (

𝑀2𝑠2 + 𝐾2

𝐾2
) − 𝑋𝑜(𝑠)) 

   

𝑀1𝑠2𝑋𝑜(𝑠) (
𝑀2𝑠2 + 𝐾2

𝐾2
) + 𝐾1𝑋𝑜(𝑠) (

𝑀2𝑠2 + 𝐾2

𝐾2
) + 𝐾2𝑋𝑜(𝑠) (

𝑀2𝑠2 + 𝐾2

𝐾2
) − 𝐾2𝑋𝑜(𝑠) =  𝐾1𝑋𝑖(𝑠) 

(𝑀1𝑠2𝑋𝑜(𝑠) + 𝐾1𝑋𝑜(𝑠) + 𝐾2𝑋𝑜(𝑠)) (
𝑀2𝑠2 + 𝐾2

𝐾2
) − 𝐾2𝑋𝑜(𝑠) =  𝐾1𝑋𝑖(𝑠) 

Simplifying gives: 

𝑀1𝑀2𝑠4𝑋𝑜(𝑠) + (𝐾1𝑀2 + 𝐾2𝑀2 + 𝑀1𝐾2)𝑠2𝑋𝑜(𝑠)

𝐾2
+ 𝐾1𝑋𝑜(𝑠) + 𝐾2𝑋𝑜(𝑠) − 𝐾2𝑋𝑜(𝑠) = 𝐾1𝑋𝑖(𝑠) 

Which becomes: 

𝑀1𝑀2𝑠4𝑋𝑜(𝑠) + (𝐾1𝑀2 + 𝐾2𝑀2 + 𝑀1𝐾2)𝑠2𝑋𝑜(𝑠) + 𝐾1𝐾2𝑋𝑜(𝑠) = 𝐾1𝐾2𝑋𝑖(𝑠) 
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And the transfer function is: 

𝑋0

𝑋𝑖
=

𝐾1𝐾2

𝑀1𝑀2𝑠4 + (𝑀2𝐾1 + 𝑀1𝐾2)𝑠2 + 𝐾1𝐾2
 

 

5. Derive expressions for the appropriate transfer functions for the tank systems shown in figures 5 a), b) 

and c). taking the input and output to be as indicated in the following table: 

System Input Output 

3a 𝑞𝑖 ℎ1 

3b 𝑞𝑖 ℎ2 

3c 𝑞𝑖 ℎ3 

 

Where 𝐴1, 𝐴2, and 𝐴3 are tank cross sectional areas; ℎ1, ℎ2, and ℎ3 are the liquid heights as indicated; 
𝑞𝑖, 𝑞, and 𝑞𝑜 are volume flow rates; and 𝑅1, 𝑅2, and 𝑅3 are linearised flow resistances.  

For systems 3a) and 3b) it should be noted that the volume flow rate (q) through the restrictor tap 
(denoted by a cross) is given by:  

𝑞 =
ℎ

𝑅
 

where ℎ is the height of liquid in the tank and 𝑅 is the linearised flow resistance.  
In system 3c) the volume flow rate 𝑞 through the restrictor tap is related to the difference in liquid 
"head" across it by an equation of the form: 

𝑞 =
ℎ1 − ℎ2

𝑅1
 

where ℎ1,  and ℎ2 are the liquid heights in two adjacent, connected tanks, and 𝑅1 is the linearised flow 

resistance between the connected tanks. 

Figure 5 a)        

 

 

 

 

 

 

 

 

Laplace transforms give: 

𝐴1𝑠𝐻1(𝑠) = 𝑄𝑖(𝑠) −
𝐻1(𝑠)

𝑅
 

And the transfer function for the system is: 

𝑞𝑖 

𝐴1 
ℎ1 

𝑅1 
𝑞𝑜 

Continuity – volume of water in the tank is given by 

𝑉 = 𝐴1ℎ1 

Rate of change of V= what goes in – what goes out: 

𝑑𝑉

𝑑𝑡
= 𝐴1

𝑑ℎ1

𝑑𝑡
= 𝑞𝑖 − 𝑞𝑜 

From the question,  

𝑞𝑜 =
ℎ1

𝑅1
 

Thus: 

𝐴1

𝑑ℎ1

𝑑𝑡
= 𝑞𝑖 −

ℎ1

𝑅1
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𝐺(𝑠) =
𝐻1(𝑠)

𝑄𝑖(𝑠)
=

𝑅1

1 + 𝐴1𝑅1𝑠
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Figure 5 c)  

 

 

 

 

 

 

 

In this question, we want a transfer function for 
ℎ2

𝑞𝑖
: 

𝑑𝑉1

𝑑𝑡
= 𝐴1

𝑑ℎ1

𝑑𝑡
= 𝑞𝑖 − 𝑞 = 𝑞𝑖 −

ℎ1 − ℎ2

𝑅1
 

𝑑𝑉2

𝑑𝑡
= 𝐴2

𝑑ℎ2

𝑑𝑡
= 𝑞 − 𝑞𝑜 =

ℎ1 − ℎ2

𝑅1
−

ℎ2

𝑅2
 

Laplace transforms give: 

 
𝐴1𝑠𝐻1(𝑠) = 𝑄𝑖(𝑠) −

𝐻1(𝑠) − 𝐻2(𝑠)

𝑅1
  

 (𝑅1𝐴1𝑠 + 1)𝐻1(𝑠) = 𝑅1𝑄𝑖(𝑠) + 𝐻2(𝑠) (1) 
 

𝐴2𝑠𝐻2(𝑠) =
𝐻1(𝑠) − 𝐻2(𝑠)

𝑅1
−

𝐻2(𝑠)

𝑅2
 (2) 

Substituting for 𝐻1(𝑠) in (2) gives: 

𝐴2𝑠𝐻2(𝑠) =
𝑅1𝑄𝑖(𝑠) + 𝐻2(𝑠)

𝑅1(𝑅1𝐴1𝑠 + 1)
−

𝐻2(𝑠)

𝑅1
−

𝐻2(𝑠)

𝑅2
 

Rearranging gives the transfer function: 

𝐻2(𝑠)

𝑄𝑖(𝑠)
=

𝑅2

𝐴1𝐴2𝑅1𝑅2𝑠2 + (𝐴1(𝑅1 + 𝑅2) + 𝐴2𝑅2)𝑠 + 1
 

𝑅1 𝑅2 

𝑞𝑖 

𝐴1 𝐴2 
ℎ1 

ℎ2 

𝑞𝑜 

𝑞 
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     CONTROL: Exercise Sheet 2 

 
 SHEET 2: Block Diagram Manipulation 

 
1.  

 

 

 

 

 

Step 1: In this case we are only interested in 
𝐶(𝑠)

𝑅(𝑠)
 so the first thing to do is to redraw the diagram omitting 

the distubance and reference signals: 

 

 

 

 

Step 2: Combine the forward transfer function (blocks in series multiply): 

 

Step 3: Work out the inputs and outputs 

Resolving the summing junction gives: 𝐸(𝑠) = 𝑅(𝑠) − 𝐶(𝑠) 

Then the forward transfer function gives: 

𝑅(𝑠) 𝐾

𝑠
 

𝐾1 = 1 

2

𝑠 + 2
 

𝐷(𝑠) 

𝑁(𝑠) 

𝐶(𝑠) + 

− 
+ 

+ 

− 

− 

𝑅(𝑠) 𝐾

𝑠
 

𝐾1 = 1 

2

𝑠 + 2
 

𝐶(𝑠) + 

− 

𝑅(𝑠) 

𝐾1 = 1 

൬
𝐾

𝑠
൰ ൬

2

𝑠 + 2
൰ =

2𝐾

𝑠(𝑠 + 2)
 

𝐶(𝑠) + 

− 

𝑅(𝑠) 

𝐾1 = 1 

2𝐾

𝑠(𝑠 + 2)
 

𝐶(𝑠) + 

− 

𝐸(𝑠) 
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𝐶(𝑠) = 𝐸(𝑠) ൬
2𝐾

𝑠(𝑠 + 2)
൰ =  (𝑅(𝑠) − 𝐶(𝑠)) ൬

2𝐾

𝑠(𝑠 + 2)
൰ 

𝐶(𝑠)(𝑠(𝑠 + 2)) = 2𝐾 (𝑅(𝑠) − 𝐶(𝑠)) 

Collect the terms in C(s) on the left and R(s) on the right: 

𝐶(𝑠)(𝑠2 + 2𝑠 + 2𝐾) = 2𝐾 (𝑅(𝑠)) 

This gives the transfer function: 

𝐶(𝑠)

𝑅(𝑠)
=

2𝐾

𝑠2 + 2𝑠 + 2𝐾
 

2.  

 

 

 Answer: 
𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1+𝐺(𝑠)
 

3.  

 

 

 

Step 1: assign transfer functions as follows to make drawing and keeping track easier: 

𝐺(𝑠) =
1

𝑠 + 5
                                              𝐻(𝑠) =

1

𝑠 + 10
 

The block diagram becomes: 

 

𝑅(𝑠) 𝐺(𝑠) 

 

𝐻(𝑠) 𝐶(𝑠) 

+ 

− 
+ 

− 

𝑅(𝑠) 
𝐺(𝑠) 

𝐶(𝑠) + 

− 

𝑅(𝑠) 1

𝑠 + 5
 

1

𝑠 + 10
 

𝐶(𝑠) 

+ 

− 
+ 

− 



MMME2044 Dynamics and Control 2020-21 

12 
 

Step 2: The end goal is to have a forward transfer function and a feedback transfer function looking like: 

So to achieve this, the feedback loops have to start at 𝐶(𝑠) and finish at the summing junction at the left.  

 

So if we move the origin of the upper feedback loop to the right and divide by 𝐻(𝑠), the diagram becomes:  

 

To verify that this will give the same answer, consider the intermediate signal 𝐴(𝑠) produced by the 

summing junction. In the original block diagram, 𝐴(𝑠) is fed back and subtracted from 𝑅(𝑠). In the new 

block diagram, A(s) is multiplied by H(s) and subsequently divided by H(s). As these are linear functions, 

with no discontinuity, this means that A(s) is still the second input to the summing junction. 

Step 3: Using the same logic, move the lower feedback loop to the left of G(s) and feed into the first 

summing junction. Be careful with the signs:

 

Again, to verify: If the input to the first block, G(s) is E(s) then A(s) is given by: 

𝑅(𝑠) 𝐺(𝑠) 

 

𝐻(𝑠) 𝐶(𝑠) 

+ 

− 
+ 

− 

𝐴(𝑠) 

𝑅(𝑠) 𝐺(𝑠) 

  

𝐻(𝑠) 𝐶(𝑠) 

+ 

− 
+ 

− 

1

𝐻(𝑠)
 

𝐴(𝑠) 

𝐴(𝑠) 

𝑅(𝑠) 𝐺(𝑠) 

  

𝐻(𝑠) 𝐶(𝑠) 

+ 

− 

1

𝐻(𝑠)
 

1

𝐺(𝑠)
 

− 

𝐴(𝑠) 

𝑅(𝑠) 

𝐺2(𝑠) 

𝐺1(𝑠) 𝐶(𝑠) + 

− 

𝐸(𝑠) 
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Top diagram:    𝐴(𝑠) = 𝐺(𝑠) (𝑅(𝑠) −
𝐶(𝑠)

𝐻(𝑠)
) − 𝐶(𝑠) 

Bottom diagram:   𝐴(𝑠) = 𝐺(𝑠)𝐸(𝑠) = 𝐺(𝑠) (𝑅(𝑠) −
𝐶(𝑠)

𝐺(𝑠)
−

𝐶(𝑠)

𝐻(𝑠)
) 

𝐴(𝑠) = 𝐺(𝑠)𝐸(𝑠) = 𝐺(𝑠) (𝑅(𝑠) −
𝐶(𝑠)

𝐻(𝑠)
) − 𝐶(𝑠) 

So we have shown that these are equivalent: 

Step 4: Combine feedback transfer functions remember that elements in parallel follow the signs in the 

summing junction: 

 

Step 5: Put s values back in:  

𝐺(𝑠) =
1

𝑠 + 5
               

1

 𝐺(𝑠)
=s+5            𝐻(𝑠) =

1

𝑠 + 10
        

1

 𝐻(𝑠)
=s+10  

The block diagram becomes: 

 

Step 5: Algebra 

𝐶(𝑠) = (𝑅(𝑠) − (2𝑠 + 15)𝐶(𝑠)) ൬
1

(𝑠 + 5)(𝑠 + 10)
൰ 

𝐶(𝑠)(𝑠2 + 15𝑠 + 50 + (2𝑠 + 15)) =  𝑅(𝑠) 

The transfer function is therefore: 

 

 

  

𝑅(𝑠) 𝐺(𝑠)𝐻(𝑠) 𝐶(𝑠) 

+ 

− 

1

𝐺(𝑠)
+

1

𝐻(𝑠)
 

𝑅(𝑠) 1

(𝑠 + 5)(𝑠 + 10)
 

𝐶(𝑠) 

+ 

− 

𝑠 + 10 + 𝑠 + 5 

𝐶(𝑠)

𝑅(𝑠)
=

1

(𝑠2 + 17𝑠 + 65)
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4.  

 

 

 

Answer: 
𝐶(𝑠)

𝑅(𝑠)
=

𝐾1

𝑠(𝑠+1)−𝐾1(𝐾2𝑠+1)
 

5. 

 

 

 

 

This is quite similar to No. 3 and the approach to take is similar. The upper loop needs to go to the left and 

the lower loop to the right. Using the same logic as before: 

 

 

 

 

 

 

The feedback loops can then be added together to give: 

 

 

 

 

 

And then  

𝐶(𝑠) = (𝑅(𝑠) − ൬
𝐻1

𝐺2
−

𝐻2

𝐺1
൰ 𝐶(𝑠)) 𝐺1𝐺2 

𝐶(𝑠)(1 + 𝐻1𝐺1 − 𝐻2𝐺2) = 𝐺1𝐺2 𝑅(𝑠) 

𝑅(𝑠) 𝐾1

𝑠 + 1
 

1

𝑠
 

𝐶(𝑠) + 

+ 

+ + 

𝐾2 

𝐺2 
𝑅(𝑠) 𝐶(𝑠) + 

− 
+ 

+ 

𝐺1 

𝐻2 

𝐻1 

𝐺2 
𝑅(𝑠) 𝐶(𝑠) + 

− 

+ 

𝐺1 

𝐻2

𝐺1
 

𝐻1

𝐺2
 

𝑅(𝑠) 𝐶(𝑠) + 

− 
𝐺1𝐺2 

𝐻1

𝐺2
−

𝐻2

𝐺1
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𝐶(𝑠)

𝑅(𝑠)
=

𝐺1𝐺2

(1 + 𝐻1𝐺1 − 𝐻2𝐺2)
 

6. A system of two tanks similar to the second laboratory experiment (yet different) is shown in figure 7. 

 

 

 

 

 

 

Figure 7 

T represents temperature and Q is the heat input. Determine the overall transfer function for the system 

𝐺(𝑠) =
𝑇2(𝑠)

𝑇0(𝑠)
 

Answer:  

𝐺(𝑠) =
𝑇2(𝑠)

𝑇0(𝑠)
=

1

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1) + 0.01𝐺𝑐(𝑠)
 

 

 

7. A control system to maintain the speed of a motor is shown in figure 7.  

 

 

 

 

 

Figure 7. 

The motor has a transfer function of 𝐺(𝑠) =
1

𝑠+3
. 

Determine the overall transfer function of the system with 𝜔𝑑 to 𝜔. 

 

 
 

𝑄(𝑠) 𝑇2(𝑠) 

+ 
− 

+ 

+ 

𝐺𝑐(𝑠) 

1

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
 𝑇0(𝑠) 

0.01

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
 

𝑇2𝑑(𝑠) 

𝐺(𝑠) 
𝜔𝑑(𝑠) 𝜔(𝑠) + 

− 
+ 

− 𝐾

𝑠
 

𝐾1 

𝐷(𝑠) 
Speed 

Tachometer 
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Step 1: D(s) will have a different transfer function so we can remove it from the block 
diagram: 

Step 2: Combine the blocks in the forward section: 
 

 
 

 
 
 

 
 

 
Step 3: Resolve the transfer function: 

𝜔(𝑠) =
𝐾𝐺(𝑠)

𝑠
(𝜔𝑑(𝑠) − 𝐾1𝜔(𝑠)) 

𝜔(𝑠) (1 +
𝐾𝐾1𝐺(𝑠)

𝑠
) =

𝐾𝐺(𝑠)

𝑠
𝜔𝑑(𝑠) 

𝜔(𝑠)

𝜔𝑑(𝑠)
=

𝐾𝐺(𝑠)
𝑠

1 +
𝐾𝐾1𝐺(𝑠)

𝑠

=
𝐾𝐺(𝑠)

𝑠 + 𝐾𝐾1𝐺(𝑠)
 

  

𝐺(𝑠) 
𝜔𝑑(𝑠) 𝜔(𝑠) + 

− 

𝐾

𝑠
 

𝐾1 

Speed 

Tachometer 

𝜔𝑑(𝑠) 
𝜔(𝑠) + 

− 

𝐾𝐺(𝑠)

𝑠
 

𝐾1 

Speed 

Tachometer 
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Exercise Sheet 3 
Q.1 

a)

 
Step 1: Derive a relationship for 𝑥𝑖, 𝑦, 𝑥𝑜𝑢𝑡 from the input lever and the feedback link: 

From the information in the question, 
𝑦 − 𝑥𝑖

0.1
=

𝑥𝑖 − 𝑥𝑜𝑢𝑡

0.9
 

(Similar triangles – see diagram on the left) 

We are also told that the flow rate of hydraulic pump is given by: 

𝑞 = 0.2𝑦 𝑚3𝑠−1 

And so the rate of change of load position, 𝑥𝑜𝑢𝑡 is given by the flow rate (change in volume) divided by the 

piston area to give the change in length: 

𝑑𝑥𝑜𝑢𝑡

𝑑𝑡
=

𝑞

0.01
𝑚𝑠−1 

Taking Laplace Transforms: 

𝑌(𝑠) − 𝑋𝑖(𝑠)

0.1
=

𝑋𝑖(𝑠) − 𝑋𝑜𝑢𝑡(𝑠)

0.9
 

Rearranging gives: 

9(𝑌(𝑠) − 𝑋𝑖(𝑠)) = 𝑋𝑖(𝑠) − 𝑋𝑜𝑢𝑡(𝑠) 

 

9𝑌(𝑠) + 𝑋𝑜𝑢𝑡(𝑠) = 10𝑋𝑖(𝑠) 

 

𝑄(𝑠) = 0.2𝑌(𝑠)  

𝑠𝑋𝑜𝑢𝑡(𝑠) =
𝑄(𝑠)

0.01
=

0.2𝑌(𝑠)

0.01
= 20𝑌(𝑠) → 𝑌(𝑠) =

𝑠𝑋𝑜𝑢𝑡(𝑠)

20
 

 

Substituting for 𝑌(𝑠): 

9𝑠𝑋𝑜𝑢𝑡(𝑠)

20
+ 𝑋𝑜𝑢𝑡(𝑠) = 10𝑋𝑖(𝑠) 

𝑋𝑜𝑢𝑡(𝑠)

𝑋𝑖(𝑠)
=

10

1 + 0.45𝑠
 

𝑥𝑜𝑢𝑡 

𝑥𝑖 

𝑦 

𝑞 

𝑥𝑖 

𝑥𝑜𝑢𝑡 

𝑦 
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Hence, using the form 
𝜇

1+𝑇𝑠
, the gain is 10 and the time constant is 0.45. 

Check: We can verify the gain using the final value theorem as follows: 

If the input, 𝑋𝑖(𝑠), is a unit step at t=0 

𝑥𝑜𝑢𝑡(𝑡 → ∞) = lim
𝑠→0

(𝑠 ൬
1

𝑠
൰ ൬

10

1 + 0.45𝑠
൰) = 10 

b): Error at t=1.0s after a unit step input 

From the table of Laplace transforms, on page 10: 

𝑋𝑖(𝑠) =
1

𝑠
 

𝑋𝑜𝑢𝑡(𝑠) =
1

𝑠
൬

10

1 + 0.45𝑠
൰ 

Taking inverse laplace transforms gives the output in the time domain: 

𝑥𝑜𝑢𝑡(𝑡) = 𝜇 (1 − 𝑒−𝑡
𝑇⁄ ) 

 

Graph 1 

This function (the blue line) is plotted in graph 1. The red line is the asymptote, y=10. 

At t=1, the error is given by: 

𝑥𝑜𝑢𝑡(𝑡 = ∞) − 𝑥𝑜𝑢𝑡(𝑡 = 1) = 𝜇 ൬1 − (1 − 𝑒−1
𝑇⁄ )൰ = 10 × 𝑒−1

0.45⁄ = 1.08 

c) For a ramp input given by: 

𝑋𝑖(𝑠) =
0.01

𝑠2
 

Using the transfer function calculated earlier:  

𝑋𝑜𝑢𝑡(𝑠)

𝑋𝑖(𝑠)
=

10

1 + 0.45𝑠
 

the output in the s-domain will be given by 

𝑋𝑜𝑢𝑡(𝑠) =
0.01

𝑠2
൬

10

1 + 0.45𝑠
൰ =

0.1

𝑠2(1 + 0.45𝑠)
 

To find the velocity lag for 𝑡 → ∞: 

Method 1: Time domain, taking inverse laplace transforms (number 9, on page 10 of the notes): 

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8
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𝑥𝑜𝑢𝑡(𝑡) = 0.1𝑡 −
0.1

1
0.45⁄

(1 − 𝑒−𝑡
0.45⁄ )  = 0.1𝑡 − 0.045 (1 − 𝑒−𝑡

0.45⁄ )  

And so steady state velocity lag = 0.045 

Method 2: Final value theorem 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑙𝑎𝑔 (𝑡 → ∞) =  lim
𝑠→0

(𝑠(𝜇𝑋𝑖(𝑠) − 𝑋𝑜𝑢𝑡(𝑠))) = lim s
𝑠→0

൬
0.1

𝑠2
−

0.1

𝑠2(1 + 0.45𝑠)
൰ 

= lim
𝑠→0

𝑠 (
0.1(1 + 0.45𝑠) − 0.1

𝑠2(1 + 0.45𝑠)
) = = lim

𝑠→0
(

0.045𝑠2

𝑠2(1 + 0.45𝑠)
) = 0.045 

Note: either method is correct and both take about the same amount of working: the final choice is up to 

you. 

Question 2 numerical answers: 

2 a)   
𝐾𝑅𝐻𝑖(𝑠)+𝑅𝑄𝐷(𝑠)

1+𝐾𝑅+𝐴𝑅𝑠
 b) K=0.3 

 

Exercise Sheet 4 
 

1. Figure 1 shows a mass-damper-spring system with an applied force p(t). 

a. Derive the transfer function G(s) that relates the applied force p(t) to the velocity 
of the mass, v(t). Let the Laplace Transform of p(t) and v(t) to be P(s) and V(s), 

respectively.  

 
Figure 1. 

The first step here is to determine the equation of motion in the time domain: if the velocity of the mass 

is �̇� then the force due to the damper is −𝑐�̇� (note that it will always oppose the motion). Force due to 

the spring is −𝑘𝑥, so the net force acting on the mass will be: 

Net force = 𝑝(𝑡) − 𝑐�̇� − 𝑘𝑥 

Therefore if the acceleration of the mass is �̈� : 

𝑚�̈� = 𝑝(𝑡) − 𝑐�̇� − 𝑘𝑥 

Rearranging gives the familiar form: 

𝑝(𝑡) = 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 

And Laplace transforms give us: 

𝑃(𝑠) = (𝑚𝑠2 + 𝑐𝑠 + 𝑘)𝑋(𝑠) 

𝑚 

𝑥 

𝑝(𝑡) 

𝑘 𝑐 
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This is fine – but the question asks for a transfer function in terms of the velocity, 𝑣. I find it easiest to 

work in terms of 𝑥 to here, and then to substitute as follows: 

If 𝑣 = �̇�, then for a system that is initially at rest (number 1 in the table of Laplace transforms):  

𝑉(𝑠) = 𝑠𝑋(𝑠) 

So substituting 
𝑉(𝑠)

𝑠⁄  for 𝑋(𝑠): 

𝑃(𝑠) = (𝑚𝑠2 + 𝑐𝑠 + 𝑘)𝑋(𝑠) =
(𝑚𝑠2 + 𝑐𝑠 + 𝑘)𝑉(𝑠)

𝑠
 

Rearranging gives the transfer function: 

𝐺(𝑠) =
𝑉(𝑠)

𝑃(𝑠)
=

𝑠

𝑚𝑠2 + 𝑐𝑠 + 𝑘
 

 

b. Determine the steady state velocity response of the mass when a step input force is 

applied to the system. The magnitude of the step input is α.  

The input force has the Laplace transform: 

𝑃(𝑠) =
𝑎

𝑠
 

And so the velocity will be given by: 

𝑉(𝑠) = 𝐺(𝑠)𝑃(𝑠) =
𝑎

𝑠
×

𝑠

𝑚𝑠2 + 𝑐𝑠 + 𝑘
=

𝑎

𝑚𝑠2 + 𝑐𝑠 + 𝑘
 

Beware of the pitfall here – this expression can be solved using inverse Laplace transforms or using 

the final value theorem. Doing this in the time domain is more involved and requires some 

understanding to give a result: 

Inverse Laplace: 

𝑉(𝑠) =
𝑎

𝑚𝑠2 + 𝑐𝑠 + 𝑘
 

From the table of Laplace transforms (number 16): 

𝜔

√1 − 𝛾2
𝑒−𝛾𝜔𝑡 sin (𝜔𝑡√1 − 𝛾2) ℒ⃗

𝜔2

𝑠2 + 2𝛾𝜔𝑠 + 𝜔2
 

𝑉(𝑠) =
𝑎

𝑘
(

𝑘
𝑚⁄

𝑠2 + 𝑐𝑠
𝑚⁄ + 𝑘

𝑚⁄
) 

So this system will have a natural frequency 𝑘 𝑚⁄  (in radians per second) and a damping ratio 𝛾 

given by 𝑐 2𝑘⁄ . In the time domain, the solution 
𝜔

√1−𝛾2
𝑒−𝛾𝜔𝑡 sin(𝜔𝑡√1 − 𝛾2)is only valid for 𝛾 <

1 but we are unable to determine this from the question. 

Performing reverse Laplace transforms: 

𝑣(𝑡) =
𝑎

𝑘
(

𝜔

√1 − 𝛾2
𝑒−𝛾𝜔𝑡 sin (𝜔𝑡√1 − 𝛾2)) 𝛾 < 1 

𝑣(𝑡) =
𝑎𝑡

𝑘
𝑒−𝑘𝑡

𝑚⁄  

 (consider the limiting case below for 𝑙 = 𝑛 + 𝛿)* 

𝛾 = 1 

𝑣(𝑡) =
𝑎

𝑘
(

1

𝑙 − 𝑛
(𝑒−𝑛𝑡 − 𝑒−𝑙𝑡)) 

Where  𝑙 and 𝑛 are 
−𝑐

𝑚⁄ +√(𝑐
𝑚⁄ )2−4𝑘

𝑚⁄

2
and 

−𝑐
𝑚⁄ −√(𝑐

𝑚⁄ )2−4𝑘
𝑚⁄

2
 

𝛾 > 1 

For all of these forms, the steady state velocity will be zero due to the dominant exponential term.  
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Using the Final value theorem: 

lim
𝑡→∞

𝑣(𝑡) = lim
𝑡

𝑠→0

𝑠𝑉(𝑠) =
𝑠𝑎

𝑚𝑠2 + 𝑐𝑠 + 𝑘
= 0 

 

 

c. Determine the steady state velocity response of the mass when a ramp input force 

𝑝(𝑡) = 𝜎𝑡, is applied to system.  

The first step here is to get the input from the table of Laplace transforms (no. 6, 

multiply by 𝜎): 

𝑃(𝑠) =
𝜎

𝑠2
 

Multiplying the input by the transfer function gives the output: 

𝑉(𝑠) = 𝐺(𝑠)𝑃(𝑠) =
𝜎

𝑠2
×

𝑠

𝑚𝑠2 + 𝑐𝑠 + 𝑘
=

𝜎

𝑠(𝑚𝑠2 + 𝑐𝑠 + 𝑘)
 

Doing this in the time domain is feasible, but rather involved: the reverse Laplace 

transform of this for the underdamped case gives: 

𝑉(𝑠) =
𝜎

𝑘
(1 −

𝑒−𝛾𝜔𝑡

√1 − 𝛾2
sin (𝜔𝑡√1 − 𝛾2 + 𝜑)) 

Where 𝜔 = √𝑘
𝑚⁄ , 𝛾 = 𝑐

2√𝑘𝑚⁄  and 𝜑 = cos−1 𝛾. As 𝑡 → ∞, the output becomes: 

𝑉(𝑠) =
𝜎

𝑘
 

Using the final value theorem is more straightforward: 

lim
𝑡→∞

𝑣(𝑡) = lim
𝑡

𝑠→0

𝑠𝑉(𝑠) =
𝑠𝜎

𝑠(𝑚𝑠2 + 𝑐𝑠 + 𝑘)
=

𝜎

𝑚𝑠2 + 𝑐𝑠 + 𝑘
=

𝜎

𝑘
 

As can be seen, both methods give the same answer – my advice would be to be 

comfortable with the final value theorem as it takes less time and is generally less error 

prone. 

Question 2: Numerical answers –  

a) 𝑉(𝑠)

𝑉𝑅(𝑠)
=

𝐾𝑐

𝑚𝑠2 + 𝑐𝑠 + 𝑘 + 𝐾𝑐

 

b) 𝑉(𝑠)

𝐹𝐷(𝑠)
=

1

𝑚𝑠2 + 𝑐𝑠 + 𝑘 + 𝐾𝑐

 

 

3. Figure 2a shows a system for controlling the azimuth angle of a large antenna aerial. 

The input signal is provided by the input potentiometer, which develops 0.05 Volts 

per degree change in input 𝜃𝑖. The angular position of the aerial is measured by a 

similar potentiometer that also generates 0.05 Volts per degree change in the aerial 
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position 𝜃𝑂. The resulting differential error voltage is fed into the power amplifier 

which delivers a current to the motor with a gain of 200 Amps/Volt. The servo motor 

develops a torque of 0.5Nm/Amp and the moment of inertia of the rotating parts of 

the motor is 0.2 kg m2. The gear ratio of the reduction gear between the motor and 

the antenna turntable is 10:1 and the moment of inertia of the aerial assembly about 

the turntable axis is 10 kg m2. 

A viscous damping torque of 100Nm/(rad s-1) opposes the rotation of the aerial. 

 
Figure 2a. Antenna Azimuth Control System (adapted from Nise, 2000) 

a) Draw the block diagram for the system and derive the overall transfer function 

relating 𝜃𝑂 and 𝜃𝑖. 

 
Solution: First step is to draw the system and the feedback loop:  

System Element Transfer function Value 

Input Potentiometer 

(scalar constant) 

𝐾1 0.05 Volts per degree 

(2.86 Volts per Radian) 

Feedback Potentiometer 

(scalar constant) 

𝐾1 0.05 Volts per degree 

(identical to input pot.) 

Power Amplifier (scalar 

constant) 

𝐾2 200 Amps/Volt 

Servo motor 𝐾3 0.5Nm/Amp 

Gear train and antenna 𝐺(𝑠) See below for working 
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The working becomes easier if you note that the input and feedback potentiometers are 
identical and so the block diagram can also be given as: 

 
To find G(s), consider the physics of the motor and the antenna: 
 

Torque applied: 
𝐿𝑂 = 𝑁𝐿 

 

Using the formula for the referred 
moment of inertia through the 

gearbox: 
 

𝐿𝑂 = (𝐽1𝑁2 + 𝐽2)
𝑑𝜔𝑂

𝑑𝑡
+ 𝐶𝜔𝑂 

 

Moving to the Laplace domain: 
 

𝐿𝑂(𝑠) = (𝐽1𝑁2𝑠2 + 𝐽2𝑠2)𝜃𝑂(𝑠)
+ 𝐶𝑠𝜃𝑂(𝑠) 

𝜃𝑂(𝑠)

𝐿𝑂(𝑠)
=

𝜃𝑂(𝑠)

𝑁𝐿(𝑠)
=

1

(𝐽1𝑁2𝑠2 + 𝐽2𝑠2) + 𝐶𝑠
 

 
 

And the transfer function is therefore: 

𝐺(𝑠) =
𝜃𝑂(𝑠)

𝐿(𝑠)
=

𝑁

((𝐽1𝑁2 + 𝐽2)𝑠2 + 𝐶𝑠)
 

𝜃𝑖(𝑠) 
𝐾2 𝐺(𝑠) 

𝑉(𝑠) 

+ 
− 

𝐾1 

𝐾1 

𝜃𝑜(𝑠) 

𝐼(𝑠) 𝐿(𝑠) 

𝐾3 

𝜃𝑖(𝑠) 
𝐾2 𝐺(𝑠) 

𝑉(𝑠) 

+ 

− 

𝐾1 
𝜃𝑜(𝑠) 

𝐼(𝑠) 𝐿(𝑠) 

𝐾3 

𝐿 

𝐽1 

𝐽2 

𝜔1 

𝜔𝑂 =
𝑑𝜃𝑂

𝑑𝑡
 

𝑁 

Viscous damping = 𝐶𝜔2 

𝜃𝑂 

𝐿𝑂 
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The transfer function of the forward loop is given by: 
 

𝐾1𝐾2𝐾3𝑁

((𝐽1𝑁2 + 𝐽2)𝑠2 + 𝐶𝑠)
 

And using the result for unity feedback to calculate the system transfer function: 

 
𝜃𝑂(𝑠)

𝜃𝑖(𝑠)
=

𝐾1𝐾2𝐾3𝑁

((𝐽1𝑁2 + 𝐽2)𝑠2 + 𝐶𝑠 + 𝐾1𝐾2𝐾3𝑁)
 

Putting in the numbers from the question: 
𝜃𝑂(𝑠)

𝜃𝑖(𝑠)
=

0.05 × 200 × 0.5 × 10 × (180/𝜋)

(30𝑠2 + 100𝑠 + 0.05 × 200 × 0.5 × 10 × (180/𝜋))
=

2865

30𝑠2 + 100𝑠 + 2865
 

 

b) Calculate the system damping ratio 𝛾. 

 

Using the table of Laplace transforms, 
 

𝐴 (
𝜔2

𝑠2 + 2𝛾𝜔𝑠 + 𝜔2) =
2865

30𝑠2 + 100𝑠 + 2865
 

𝜔2 =
2865

30
 

2𝛾𝜔 =
100

30
 

𝜔 = 9.77 

𝛾 =
5

3𝜔
= 0.171 

 

c) Find the magnitude of the first overshoot which results from a step input 𝜃𝑖 = 10° 

Laplace transform of input function 𝜃𝑖(𝑠) =
10

𝑠
 

Output is given by: 

𝜃𝑂(𝑠) =
10

𝑠
൬

2865

30𝑠2 + 100𝑠 + 2865
൰ 

From the table of inverse Laplace Transforms and using the result of part (b): 

𝜃𝑂(𝑡) = 10 (1 −
𝑒−𝛾𝜔𝑡

√1 − 𝛾2
sin (𝜔𝑡√1 − 𝛾2 + 𝑐𝑜𝑠−1𝛾)) 

This function has a maximum where cos(𝜔𝑡√1 − 𝛾2 + 𝑐𝑜𝑠−1𝛾)=0 and sin(𝜔𝑡√1 − 𝛾2 +

𝑐𝑜𝑠−1𝛾)<0, i.e.  (𝜔𝑡√1 − 𝛾2 + 𝑐𝑜𝑠−1𝛾) = 3𝜋
2⁄  

 

Using 𝜔 = 9.77 and 𝛾 = 0.171:  

𝑡 =
(3𝜋

2⁄ − 𝑐𝑜𝑠−1𝛾)

𝜔√1 − 𝛾2
 

𝑡 = 0.34𝑠 
 

𝜃𝑂(𝑡) = 10 (1 −
𝑒−𝛾𝜔𝑡

√1 − 𝛾2
sin (𝜔𝑡√1 − 𝛾2 + 𝑐𝑜𝑠−1𝛾)) = 15.71° 

𝐻(𝑠) 
≡

𝐻(𝑠)

1 + 𝐻(𝑠)
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And hence the overshoot is 5.7 degrees. 
 

d) Find the steady state velocity error which results from the ramp input 𝜃𝑖 =
0.1𝑡 radians (for t>0). 

Solution: 

This can be done analytically: 

𝜃𝑖(𝑠) =
0.1

𝑠2
 

𝜃𝑂(𝑠) =
0.1

𝑠2
൬

2865

30𝑠2 + 100𝑠 + 2865
൰ 

𝜃𝑂(𝑡) = 0.1 (𝑡 −
2𝛾

𝜔
−

𝑒−𝛾𝜔𝑡

√1 − 𝛾2
sin (𝜔𝑡√1 − 𝛾2 + 𝑐𝑜𝑠−1𝛾)) 

By inspection, lim
𝑡→∞

(𝜃𝑖(𝑡) − 𝜃𝑂(𝑡)) =
0.2𝛾

𝜔
= 0.0035 using the values calculated in parts (b) 

and (c) as the final term tends to zero as t tends to infinity. 

 
Alternatively, using the finite value theorem: 
The error is given by: 

𝐸(𝑠) = 𝜃𝑖(𝑠) − 𝜃𝑂(𝑠) =
0.1

𝑠2
−

0.1

𝑠2
൬

2865

30𝑠2 + 100𝑠 + 2865
൰ =

0.1

𝑠2 (
30𝑠2 + 100𝑠

30𝑠2 + 100𝑠 + 2865
) 

lim
𝑠→0

𝑠𝐸(𝑠) =
1

𝑠
(

3𝑠2+10𝑠

30𝑠2+100𝑠+2865
) =

10

2865
=0.0035 

 

SHEET 5: STABILITY OF FEEDBACK SYSTEMS  

 
1. The characteristic equation of a feedback control system is 

𝑠3 + (5 + 𝐾)𝑠2 + 7𝑠 + 18 + 9𝐾 = 0 

a. Determine the maximum positive value of K, below which the system is stable. 

To get started here, we begin by writing out the Routh Table. Remember the rules for 
where to put the coefficients from the characteristic equation and how to calculate the 

entries in the 3rd and lower rows: 

𝑠3 1 7 0 0 

𝑠2 5+K 18+9K 0 0 

𝑠 7(5 + 𝐾) − (18 + 9𝐾)

5 + 𝐾
=

17 − 2𝐾

5 + 𝐾
 

0 0 0 

𝑠0 18+9K 0 0 0 

 

From here, 
17−2𝐾

5+𝐾
 will have a negative value for 𝐾 > 8.5 and so the maximum positive 

value for K is 8.5 – anything above this will make the system unstable. The system 
will also be unstable for k<-2 but this was not asked for in the question. 

b. Determine the frequency of oscillations at this value of K.  

This part of the question is mathematically quite simple but does demand some 
understanding of the concept of the Root locus: 
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The figure above shows the root locus for a system with the characteristic equation 

𝑄(𝑠) = 𝑠2 + 2𝜁𝑠 + 1 

Note that in this case the natural frequency 𝜔𝑛 is 1. At the limit of stability (K=8.5 

from the previous part of the question), the root locus will cross the imaginary 

(vertical) axis and the Real part of the root is zero. This will have a damping factor of 

zero, making the familiar form of the oscillatory system (𝑄(𝑠) = 𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2) 

become: 

𝑄(𝑠) = 𝑠2 + 𝜔𝑛
2 

A third order system with a negative real root and two complex roots at the limit of 
stability will have a characteristic equation: 

𝑄(𝑠) = (𝑠 + 𝑎)(𝑠2 + 𝜔𝑛
2) = 𝑠3 + 𝑎𝑠2 + 𝜔𝑛

2𝑠 + 𝑎𝜔𝑛
2 

From the question: 

𝑠3 + (5 + 𝐾)𝑠2 + 7𝑠 + 18 + 9𝐾 = 0 

From Part (a), K=8.5 

𝑠3 + (13.5)𝑠2 + 7𝑠 + 94.5 = 0 

𝜔𝑛
2 = 7 

And so the frequency of oscillations will be 2.65 rad s-1 

My tips to all students are to practise – it is highly unlikely that you will be given a 
supplementary question like this on a 4th or higher order system, but this kind of 

question is a favourite in exams and textbooks, to test how well you understand the 
concepts underlying control theory. 

2. A unity feedback control system is shown in Figure Q2.  

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

-5 -4 -3 -2 -1 0 1

Dominant overdamped Non-dominant overdamped underdamped 1 underdamped 2

Re(s) 

Im(s) 
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Figure Q2 

Where r is a reference signal and c is the system response. 

The forward loop transfer function is given by:  

𝐺(𝑠) =
3(𝑠 + 4)(𝑠 + 8)

𝑠(𝑠 + 5)2
 

Determine the relative stability of the system. 

 

3. A closed loop feedback control system is shown in figure Q3. 

 

Figure Q3 

Where r is a reference signal and c is a system response. The transfer functions for 

the forward and feedback loops are given by: 

𝐺(𝑠) =
𝐾(𝑠 + 40)

𝑠(𝑠 + 10)
                                𝐻(𝑠) =

1

𝑠 + 20
 

Use the Routh-Hurwitz stability criterion to determine the values of K for which the 

closed loop system will be stable. 

To get started on this question, first work out the overall transfer function: 

𝐶(𝑠) = (𝑅(𝑠) − 𝐻(𝑠)𝐶(𝑠))𝐺(𝑠) 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
=

𝐾(𝑠 + 40)

𝑠(𝑠 + 10)
(

1

1 +
𝐾(𝑠 + 40)

𝑠(𝑠 + 10)(𝑠 + 20)

) =
𝐾(𝑠 + 40)

𝑠(𝑠 + 10)
(

(𝑠 + 20)

(𝑠 + 20) +
𝐾(𝑠 + 40)
𝑠(𝑠 + 10)

) 

𝐶(𝑠)

𝑅(𝑠)
= (

𝐾(𝑠 + 40)(𝑠 + 20)

𝑠(𝑠 + 10)(𝑠 + 20) + 𝐾(𝑠 + 40)
) 

The characteristic equation is therefore: 

𝑄(𝑠) = 𝑠(𝑠 + 10)(𝑠 + 20) + 𝐾(𝑠 + 40) = 𝑠3 + 30𝑠2 + (200 + 𝐾)𝑠 + 40𝐾 

𝑅(𝑠) 
𝐺(𝑠) 

𝐶(𝑠) + 

− 

𝑅(𝑠) 
𝐺(𝑠) 

𝐶(𝑠) + 

− 

𝐻(𝑠) 
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Note: For all of this, don’t worry about the numerator (the characteristic function) as 

this does not determine stability. 

The Routh array will be: 

 

𝑠3 1 200+K 0 0 

𝑠2 30 40K 0 0 

𝑠 6000 + 30𝐾 − 40𝐾

30𝐾
=

600 − 𝐾

3𝐾
 

0 0 0 

𝑠0 40K 0 0 0 

 

So from the table, the system will be stable for 0<K<600 

 

 

4. The transfer function of a control system is as follows: 

𝐺(𝑠) =
1

𝑠3 + 5𝑠2 + 20𝑠 + 6
 

 

a) Is the system stable? 
b) Use the final value theorem to calculate the unit step response of the system. 

 

Answers: 

a) Yes (if you think about it, there would be no point asking part (b) if the system 
was unstable …) 

b) 
1

6
 

Show your working! 

 

*- from page 16: if one root is 𝑛 + 𝛿 and the other root is n, then 

𝑣(𝑡) =
𝑎

𝑘
(

1

𝑛 + 𝛿 − 𝑛
(𝑒−𝑛𝑡 − 𝑒−(𝑛+𝛿)𝑡)) =

𝑎

𝑘𝛿
(𝑒−𝑛𝑡 − 𝑒−(𝑛+𝛿)𝑡) =

𝑎

𝑘𝛿
(𝑒−𝑛𝑡 − 𝑒−𝛿𝑡𝑒−𝑛𝑡) 

Using the result that for a very small vale of 𝛿𝑡, 𝑒−𝛿𝑡 = 1 − 𝛿𝑡, this becomes: 

𝑣(𝑡) =
𝑎

𝑘𝛿
𝑒−𝑛𝑡(1 − (1 − 𝛿𝑡)) =

𝑎𝑡

𝑘
𝑒−𝑛𝑡 

Where  𝑙 and 𝑛 are 
−𝑐

𝑚⁄ +√(𝑐
𝑚⁄ )2−4𝑘

𝑚⁄

2
and 

−𝑐
𝑚⁄ −√(𝑐

𝑚⁄ )2−4𝑘
𝑚⁄

2
 


